論文指出,使用肌電信號(hào)傳感器有幾個(gè)好處:
首先,降低了模型的復(fù)雜性。不需要照相機(jī)等動(dòng)作捕捉設(shè)備,設(shè)備更輕巧;
其次,排除了遮擋、環(huán)境噪音等因素的干擾;
另外,肌肉信號(hào)能夠反映出肉眼觀測(cè)不到的運(yùn)動(dòng)狀態(tài)(比如關(guān)節(jié)僵硬),有助于提升人機(jī)交互系統(tǒng)的靈活性。
▲“行為控制機(jī)器人(Conduct-a-Bot)”系統(tǒng)
根據(jù)論文,讓機(jī)器人理解手勢(shì)指令有兩個(gè)好處。首先,相比于連續(xù)運(yùn)動(dòng),手勢(shì)有助于增加系統(tǒng)的穩(wěn)健性;其次,這種設(shè)計(jì)可以減少需要的電極數(shù)目,降低了模型的復(fù)雜性,增加了可部署性。
研究人員共設(shè)計(jì)了8種手勢(shì),分別是:手臂僵直、轉(zhuǎn)動(dòng)(分為順時(shí)針轉(zhuǎn)動(dòng)和逆時(shí)針轉(zhuǎn)動(dòng))、握拳(分為左手、右手、向上、向下)、手腕彎曲和伸展。
對(duì)于大多數(shù)手勢(shì)引起的肌電信號(hào),研究人員使用自適應(yīng)在線聚類算法(Online clustering for adaptive thresholding)幫助機(jī)器人理解。
最初,所有的觀察結(jié)果都儲(chǔ)存在未知緩沖區(qū)。幾秒鐘后,高斯混合模型(GMMs,Gaussian Mixture Models)會(huì)對(duì)數(shù)據(jù)流分類,并將其添加到相應(yīng)的滾動(dòng)緩沖區(qū)中。
相比于離線訓(xùn)練方法,自適應(yīng)在線聚類算法不儲(chǔ)存所有的歷史數(shù)據(jù),不需要大量的校準(zhǔn)、訓(xùn)練過(guò)程,可以做到即插即用。高斯混合模型(GMMs,Gaussian Mixture Models)會(huì)持續(xù)更新,聚類數(shù)據(jù)流并創(chuàng)建自適應(yīng)閾值。這樣,系統(tǒng)就可以適應(yīng)不同用戶的使用習(xí)慣。
對(duì)于那些很難用自適應(yīng)閾值來(lái)描述的手勢(shì)(在上、下、左、右四個(gè)方向上的握拳動(dòng)作),研究人員用一個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)幫助系統(tǒng)理解。這個(gè)神經(jīng)網(wǎng)絡(luò)用過(guò)去收集的一些受試者數(shù)據(jù)進(jìn)行訓(xùn)練。
通過(guò)這兩種方法,最終每個(gè)集群的訓(xùn)練池中都包含至少25%的手勢(shì)。使用固定的覆蓋率有助于保持原有的手勢(shì)分類。
在測(cè)試階段,研究人員按照這樣的順序給出指令:轉(zhuǎn)動(dòng),手臂僵直,向上、下、右握拳,向左握拳。分類器優(yōu)先按照最近0.2s內(nèi)檢測(cè)到的手勢(shì)做出反應(yīng),其次按照根據(jù)肌電信號(hào)預(yù)測(cè)到的運(yùn)動(dòng)意圖做出反應(yīng)。
研究人員安排6名參與者做出1200次命令手勢(shì),以此評(píng)估分類器的性能和界面效率。根據(jù)統(tǒng)計(jì)結(jié)果,分類器對(duì)手勢(shì)動(dòng)作的識(shí)別準(zhǔn)確率達(dá)到97.6%。
▲分類器分類準(zhǔn)確率
2025-08-26 13:49
2025-07-25 08:53
2025-07-25 08:50
2025-07-24 09:07
2025-07-24 09:05
2025-07-23 09:24
2025-07-23 09:22
2025-07-22 09:24
2025-07-22 09:22
2025-07-21 13:36